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Electrostatic: charges (the field source) are at rest, they cannot generate 
magnetic field 

Coloumb found that when two charges in close 
vicinity, they excert a force on on the other. This 
force was proportional to the amount of 
individual charges and inversly proportional to 
the square of the displacement between them. 

Coloumb‘s experiment using torsion balance 1785:  

Torsion balance: the 
device by which Coulomb 
discovered Coulomb's law 
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Electrostaic Field  
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The force between the two charges that happens from distance was assumed 
to happen due to a field of force which is generated from the charge and 
affects the other, this field was called the electric field and the electric field 
intensity is defined as:  
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Coloumb‘s law 
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The electric flux and electric flux density: Michael Farady Experiment 1837, 
using two concentric spheres: 
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The electric flux and electric flux density: Michael Farady Experiment 1837, 
using two concentric spheres: 

Electric flux and electric field density D 
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Electric flux density: define a quantity that does not depend on medium, only 
depend on the free charge (unbound charge). This is obtained by dividing the 
flux over the area 

The equation of D is independent from permitivity, which shows 
that D only depends on charge enclosed and not the dielectric. 

Electric flux lines leaves positive charges and enters negative charges. 

Electric flux and electric field density D 
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Maxwell‘s equations:  

Electrostatic Postulates in point form: 

Charge density is the flow source of electric field 

Electric field is conservative 
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Maxwell‘s equations in integral form:  
 
Gauss law (from the postulate and divergence theory): 

Curl of E integral form(from the postulate and stoke‘s theory): 
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The main goal is calculating the electric field which is independent from 
the magnetic field in electrostatics. 

Methods of calculating the eectric field: 
 
1.  Gauss law when symmetry is there which is the easiest way. Always 

think to solve the problem using Gauss law whenever possible. 
2.  Using the electrostatic potential to be defined later. 
3.  Using coloumbs law (most difficult way) 
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Coloumb‘s law from Gauss law: 

Q is not at the origin 

Q is at the origin 
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Gauss law examples: 
 
Infinite line charge 
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Gauss law examples: 

Infinite surface charge 

Electric field calculations using Gauss‘ law 
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Gauss law examples: 

Spherical volume charge density 

Electric field calculations using Gauss‘ law 
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Gauss law examples: 

Spherical volume charge density 

Electric field calculations using Gauss‘ law 
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example: 
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example: 
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Example superposition 
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Classification of vector fields 
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Classification of vector fields 
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Classification of vector fields 
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The curl of any gradient was proven to be zero using stokes theorem. 
 
 
 
 As a result, it was stated that and curl-free (irrotational, conservative) vector field 
can be expressed as a gradient of a scalar field. Because in electrostatics, the 
second Maxwell postulate states that the curl of electric field is zero, the electric field 
can be expressed as a gradient of a scalar field. 
 
The main motivation behind this is that, finding the electric potential is easier as it is 
a scalar field, then the electric field can be found by the derivation of the electric 
potential, which is much easier than integration, as will be shown later. 

Electric potential:  
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It is defined as the work done to move an electric charge from on point in the electric 
field to another 

Electric potential:  
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Electric potential:  
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Electric potential due to a point charge:  

For a charge not 
at the origin: 
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Electric potential due to a point charge (superposition):  

A surface whose potential is the same all over is called an equipotential 
surface. What does this tell us about the direction of electric field? 

If the reference is not infinity, the easiest will be to apply indefinite integral 
and add a constant. The constant is then evaluated from a given reference. 

Electric potential:  
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Electric potential Example: 
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Electric potential Example, reference is not infinity: 
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Electric potential Example, reference is not infinity: 
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Electric potential Example, reference is not infinity: 
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Electric potential Example, reference is not infinity: 
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Electric potential Example, reference is not infinity: 
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Electric potential due to continuous distributions:  
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Electric potential due to continuous distributions Example:  
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Electric potential due to continuous distributions Example:  
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Electric potential due to continuous distributions Example:  
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Electric potential due to continuous distributions Example:  
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Electric potential due to continuous distributions Example:  
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Electric potential due to continuous distributions Example:  
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The electric dipole: It is important to understand a dipole in order to understand the 
effect of materials on electric field and electric flux. 



Electromagnetics I 

43 

  

The electric dipole: 
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The electric dipole: 
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The  dipole electric field: 

There also exist: 
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The electric dipole example: 
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Energy density in electrostatic fields: It corresponds to how much energy is 
needed to assemble the charge distribution together. Also, the energy stored 
in the system. 

The work done in assembling three charges 
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Example (point charges) 
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Energy density in continuous charge distributions 

Using the identity 
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Energy density in continuous charge distributions 

Integrating the whole space gives only the second part of the integral, 
which means the energy is stored in the field 
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Energy density in continuous charge distributions example: 
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Energy density in continuous charge distributions example: 
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Energy density in continuous charge distributions example: 



Electromagnetics I 

54 

  

Electric field in materials: (polarization and polarization charge, dielectrics) 

Dipole moment of a single dipole  

More than a dipole in differential 
volume:  

Polarization density vector: a point function telling the direction and magnitude of 
the polarization at that point 
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Bound surface and 
volume charge 
densities 

Electric field in materials: (polarization and polarization charge, dielectrics) 
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Bound surface and 
volume charge 
densities 

Bound charges are the charges due to 
polarization. But, free charges are the 
ones that are not due to polarization 

Electric field in materials: (polarization and polarization charge, dielectrics) 
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Electric field in materials: (polarization and polarization charge, dielectrics) 

Linear isotropic and homogenius media: 

Linear: D depends linearly on E 
Isotropic: D is in the direction of E 
Homogenius: permittivity does not depend on space 
(position of the point) 

Permittivity is determined by the ability of a material to 
polarize in response to the field, and reduce the total electric 
field inside the material. It permittivity relates to a material's 
ability to transmit (or "permit") an electric field. It is directly 
related to electric susceptibility, which is a measure of how 
easily a dielectric polarizes in response to an electric field. 
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Non-Linear, anisotropic and non-homogenius media: 

Non-Linear: permitivity is not, it is constant a function of electric field. 
anisotropic: permitivity is different in different directions 
Non-homogenius: permittivity depends on space (position of the point) 
and as a result the polarization is not uniform inside the dielectric 

In a homogenious medium the polarization is uniform and the volume bound 
charges vanishes. As a result, only surface charges exist and they cancel 
each other. In a non homogenius medium both surface and volume bound 
charges exist and the total bound charge is zero. 

Electric field in materials: (polarization and polarization charge, dielectrics) 
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In a linear homogenious isotropic medium, all the equations derived 
still applies if the free space permitivity is replaced by the medium 
permitivity. 

Electric field in materials: (polarization and polarization charge, dielectrics) 
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Polarization charges example: 
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Ex. 

Polarization charges example: 
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Electric Field in Conductors: 
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Conductors: 
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Boundary conditions: 
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For the tangential component: 

For the normal component: 

As Δh goes to zero the walls contribute nothing 

Boundary conditions: 
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Boundary Conditions: 

D tangential is discontinuous but E tangential is continuous 

E normal is discontinuous but D normal is continuous 
The charge at the interface is assumed to be zero 

Law of refraction: 
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The conductor is assumed to be perfect, meaning there 
is no charges inside and the field is zero inside 
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Poisson‘s and Laplace‘s equations: 
 
 

Boundary Value Problem 
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Uniqueness theorem: 

Proof: 
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Proof more mathematical treatment: 
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Proof more mathematical treatment: 
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BVP solving approach: 
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Poisson equation example in one dimension: 
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Poisson equation example in one dimension: 
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Poisson equation example in one dimension: 
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Capacitors and capacitance: 
 
 

Doubling Q doubles the electric field of the conductor which inturn doubles 
the potential. The relation between Q and V is linear. The proportionality 
constant is C (the capacitance) 
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Two approaches for calculating capacitance: 
 
 

Approach 

Capacitors and capacitance: 
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Capacitance of two parallel plates: 

Assume uniformly distributed Q and –Q 
on the two plates 

Capacitors and capacitance: 
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Coaxial capacitance: 

Capacitors and capacitance: 
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Spherical capacitance: 

Capacitors and capacitance: 
 
 



Electromagnetics I 

99 

  

Calculating the resistance of homogenious media: 
 
•  we found that the resistance of a uniform cross section conductor 

 
•  In this the general method for calculating resistance is explained. 

 

Resistance: 
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Calculating the resistance of homogenious media: 
 
•  Ex 6.3 
 

Resistance: 
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Calculating the resistance of homogenious media: 
 
•  Ex 6.3 
 

Resistance: 
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Calculating the resistance of homogenious media: 
•  Ex 6.3 
 

Resistance: 
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Calculating the resistance of homogenious media: 
•  Ex 6.3 
 

Resistance: 
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Calculating the resistance of homogenious media: 
•  Ex 6.3 
 

Resistance: 
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Calculating the resistance of homogenious media: 
•  Ex 6.3 
 

Resistance: 
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Calculating the resistance of a capacitor in homogenious media: 

Capacitors and capacitance: 
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Calculating the resistance of a capacitor in homogenious media: 

Capacitors and capacitance: 
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When a charge is moving beside a current carrying wire, a force is exerted on 
it. The force is due to a field resulting from the current carrying wire called 
magnetic field. 
 
•  Charges moving with constant velocity generate steady magnetic field 
•  Charges moving with varying velocity generate dynamic magnetic 
field( depends on time) 

•  In this chapter, we learn how to calculate magnetic field density and intensity 
using Biot Savart‘s law, and Ampere‘s law. 
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Defining the magnetic field: A force is noticed on a moving charge with 
velocity u near a current carrying conductor. This force is proportional to q, 
the velocity component perpendicular to the magnetic field and to the 
magnetic field(Tesla, weber/m2). 

the total force in the presence of 
both electric and magnetic field 

Lorentz force: 
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Sources of magnetostatic fields are steady currents: 

To take into account that the 
magnetic fields depend not 
only on current but also the 
length of the wire, current 
element is defined: 
 
JdV: current element in 
general 
Idl : thin wire J constant with 
area 
KdS : a thin plate, J does not 
depend on thickness 
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The magnetic field intensity H: as we did in the electrostatic, we defined a 
material independent vector called D, the electric field density.We define H the 
magnetic field intensity, a quantity which does not depend on medium. 

Biot savart law in terms of H: 
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Biot Savart‘s law example: 
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Biot Savart‘s law example 2: 
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Biot Savart‘s law example 2: 
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Biot Savart‘s law example 2: 
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 The magnetic flux density B 
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We have to follow : 
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We have to follow : 
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Magnetic force: Lorentz force equation(total force) on moving charge: 

Applications: 

Magnetic force does no work because it is normal to velocity. It can only 
change the direction of velocity, not its magnitude (kinetic energy) 

Magnetic force on a current element: 
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Magnetic force between two current elements: 
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Magnetic force between two current elements: 
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Magnetic force between two current elements: 
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Magnetic force between two current elements: 
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Magnetic Torque in uniform field: 
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Magnetic dipole: it is a small loop of current 
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Magnetic dipole: it is a small loop of current 
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Magnetic dipole moment: The ability to rotate a current loop 
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Magnetitization and magnetic field in materials 

Orbiting electrons either around 
nucleus or around them selves 
produce internal magnetic dipoles 
which in turn generate magnetic 
field. On macroscopic level and 
without and external magnetic field 
applied to the material, this field 
average is zero. 



Electromagnetics I 

Magnetostatics 

143 

  

Magnetitization and magnetic field in materials 
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Magnetitization and magnetic field in materials 

For linear materials: 
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And  

Then  
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Inductors and inductance 
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Inductors and inductance 
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Inductors and 
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Inductors 
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Inductors and inductance 
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Magnetic 
circuit 
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Electrostatics and Magnetostatics vs Electrodynamics 

magnetostatic electrostatic electrodynamic 

Using Helmholtz theory in electrostatics electric field can be computed 
Using Helmholtz theory in magnetostatics magnetic field can be computed 

In electrostatics and magneto staticsElectric field and magnetic field 
can be computed independently from each other 

In electrodynamics where a varying current density and charge 
density with time exist, the magnetic and electric field are coupled 
which leads to electromagnetic fields. 
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Electrodynamics: The quantities that we aim to compute are E,D,H,B, each has 
three components=> 12 equation are needed to solve for the variables. 

To reach to the final generalized from of Maxwell‘s equations 
two generalizations to the curl equations must be applied: 
1)Farady‘s law 
2) Displacement Current Density 

The four Maxwell‘s equation are not all independent the 
divergence of both vector fields can be derived from the curl 
of the vector fields. As a result the two curl equations 
represent 6 equations each of them. The constitutive 
equations complete the 12 equations 
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Farady‘s law and electromagnetic induction: It is experimental law in which  
an electric field is induced in a loop when a time varying magnetic field is 
linking it. 

Point form Farady‘s law for 
stationary circuit 

Integral form of Farady‘s 
law for stationary circuit 
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Motional and Transformer EMF: 
1. Transformer EMF: static circuit in a time varying magnetic field 

2. Motional EMF(flux-cutting emf): moving circuit in a static magnetic field 
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Motional and Transformer EMF: 
2. Motional EMF: moving circuit in a static magnetic field 
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Motional and Transformer EMF: 
3. Both: moving circuit in a time varying magnetic field 
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Motional and Transformer EMF: 
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Motional and Transformer EMF: 
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Motional and Transformer EMF: 
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DISPLACEMENT CURRENT 
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MAXWELL'S EQUATIONS IN FINAL FORMS 
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MAXWELL'S EQUATIONS IN FINAL FORMS 
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TIME-VARYING POTENTIALS 
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TIME-VARYING POTENTIALS 
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TIME-VARYING POTENTIALS 
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Wave Propagation 
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